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Non-singular vortex methods employing anisotropic ele-
ments with piece-wise constant vorticity distributions haveResolution of boundary layer flows at moderate or high Reynolds

numbers with the vortex blob method requires a great many iso- been used by Teng [2] for elliptical elements and by Huyer
tropic elements. In this paper, an approximate method for determi- et al. [3] for rectangular elements. Bernard [4] recently
nation of the induced velocity from highly anisotropic vorticity blobs presented a method for boundary layer flows in which the
is presented, and issues related to use of anisotropic elements in

velocity field is obtained by integrating over anisotropiccalculations with vortex blob algorithms for high Reynolds number
rectangular vorticity tiles in which the vorticity variesnear-wall flows are examined. The method presented here can be

used to determine the induced velocity from smooth blob functions within each tile but is discontinuous at the tile edges. While
of arbitrary form, provided that the vorticity length scale associated non-singular, but discontinuous, vorticity representations
with the blob is much less in one direction than in orthogonal considerably lessen the noise problems experienced with
directions. The ratio of these length scales is called the blob aspect

singular representations, the contribution to velocity at aratio, «, and is used as a small parameter to construct an asymptotic
point due to nearby elements is still inaccurately estimatedapproximation to the induced velocity field. This method is applied

in the present paper to derive induced velocity expressions for with these methods because the vorticity tiles in some
anisotropic Gaussian blob functions in both two and three dimen- places overlap and in other places separate to leave gaps
sions. It is argued, using test calculations for a Blasius boundary between tiles.
layer, that although direct calculation of the induced velocity re-

Several recent vortex blob methods (e.g., Knio and Gho-quires about an order of magnitude more CPU time for anisotropic
niem [5], Winckelmans and Leonard [6], KoumoutsakosGaussian elements than for isotropic elements, this difference is

more than made up for by a reduction of several orders of magnitude et al. [7]) avoid problems with singular and discontinuous
in the number of elements needed to resolve boundary layer flows vorticity fields by using a representation consisting of a
at moderate to high Reynolds numbers. It is also found that the set of smooth, overlapping vorticity ‘‘blobs,’’ a popular
standard vortex blob representation leads to errors in the calculation

example being the Gaussian distribution. In order for aof wall slip velocity and wall shear stress due to smoothing of the
vortex blob representation to be useful, it must be possiblediscontinuity between the real and image vorticity fields at the wall,

but that these errors can be avoided by placing doublet-type ele- to determine the velocity induced by the vorticity element
ments along the wall. Q 1996 Academic Press, Inc. either analytically or using a minimum amount of numeri-

cal integration. Due to the difficulty in obtaining an analyti-
cal expression for induced velocity of a sufficiently smooth
anisotropic element, previous calculations with smooth1. INTRODUCTION
vorticity representations have relied on isotropic elements
and have necessarily been limited to either two dimensionsSingular anisotropic vorticity elements, in the form of

small vortex sheets typically aligned tangent to a nearby or low Reynolds numbers for near-wall viscous flow calcu-
lations.solid boundary, have been used for the calculation of flow

in fluid boundary layers as far back as the seminal work In this paper, an approximate method for determination
of the induced velocity from highly anisotropic, smoothof Chorin [1]. Because vortex sheets are consistent with

the natural tendency of vorticity length scaling within vorticity elements is presented. The method is based on
an asymptotic approximation which uses the element as-boundary layers, fewer sheet-like elements are needed to

achieve a given resolution in boundary layer flows than pect ratio « as a small parameter, where the maximum
relative error in induced velocity field is of order «. Thefor similar calculations employing point singularities. How-

ever, singular elements tend to produce noisy surface pres- method can be used to convert any of a variety of different
isotropic blob functions (e.g., see Winckelmans and Leo-sure results and are unsuited to most deterministic diffu-

sion schemes. nard [6]) to anisotropic forms. To illustrate the method,

286
0021-9991/96 $18.00
Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



VELOCITY INDUCED BY ANISOTROPIC VORTICITY BLOBS 287

explicit expressions are derived in the present paper for usual vortex blob method the boundary conditions on the
surface of solid bodies present in the flow are enforcedthe case of Gaussian elements in both two and three dimen-

sions. using a panel method (rather than through a choice of the
blob function), we can omit the irrotational part of thisAnisotropic vorticity elements can be used for comput-

ing near-surface flows either with the standard vortex blob decomposition for the present and consider only the in-
duced velocity field of the element in an unbounded do-algorithm [8, 9], after some extension of the convergence

proofs, or with other algorithms based on a smooth vortic- main, such that
ity representation (e.g., Marshall and Grant [10]). The use
of anisotropic elements potentially offers an enormous u 5 = 3 c. (1)
speedup for calculations of moderate and high Reynolds
number near-surface flows, since the vorticity field in the Since c is divergence-free, the vorticity v is related to c
boundary layer can be covered (with a given resolution) by the vector Poisson equation
using far fewer anisotropic elements than would be re-
quired for computations with isotropic elements. The re-

v ; = 3 u 5 2=2c. (2)duction in number of elements also yields substantial
memory savings, which is particularly important for calcu-

The particular solutions for c and u have the well-lations employing accelerated algorithms (e.g., Greengard
known formsand Rokhlin [11]). The velocity induced by anisotropic

vorticity doublets, for which the sign of the vorticity is
opposite in the two halves of the element, is obtained by

c(x, t) 5
1

4f
E

V

v(x9, t)
r

dv,

(3a)
a similar asymptotic method. It is shown in the present
paper that the standard vortex blob representation can lead
to significant error in boundary layer flows in calculation of u(x, t) 5 2

1
4f

E
V

r 3 v(x9, t)
r 3 dv

slip velocity and wall shear stress, but that these errors can
be avoided by placing vorticity doublets along the wall.

in three dimensions andSome background and a general summary of the asymp-
totic method to be followed is given in Section 2. The
method is then illustrated for two- and three-dimensional

c(x, t) 5 2
1

2f
E

A
v(x9, t) ln(r) da,

(3b)
Gaussian elements in Sections 3 and 4, respectively, includ-
ing evaluation of the relative time requirement for velocity
calculation using anisotropic Gaussian elements in compar- u(x, t) 5 2

1
2f

E
A

r 3 v(x9, t)
r 2 da

ison to that for isotropic elements. The computational sav-
ings attainable with use of anisotropic elements are docu-
mented in Section 5 using calculations for velocity profile in in two dimensions.
a Blasius boundary layer for both isotropic and anisotropic In two dimensions all vorticity fields are divergence-free,
Gaussian elements. The variation of error in resolution of but in three-dimensional problems the choice of vorticity
the velocity profile with the number of elements is also element is restricted by the kinematic requirement that
discussed in this section, with particular emphasis on satis- the vorticity field have vanishing divergence. As noted
faction of the no-slip condition at the wall. In Section by Novikov [12] and Winckelmans and Leonard [6], the
6, induced velocity expressions for vorticity doublets are solution (3b)2 for induced velocity is unchanged if we re-
obtained using a formulation similar to that presented in place the vorticity v in this expression with a vector field
Section 3, and it is shown that excellent reproduction of q (which we will call the generator field), that differs from
the Blasius boundary layer profile can be obtained, even the vorticity by the gradient of a scalar. Writing
with rather few elements, by placing anisotropic vorticity
doublets along the wall, together with anisotropic blobs in q 5 v 1 =f (4)
the boundary layer. Some conclusions are given in Sec-
tion 7.

and taking the divergence gives a Poisson equation for f as

2. GENERAL BACKGROUND AND OVERVIEW OF
=2f 5 = ? q. (5)ASYMPTOTIC METHOD

The velocity vector u in an incompressible flow can be An expression for f can be obtained either by solving the
Poisson equation (5) using Green’s functions or by solvingdecomposed, in the usual way, as the sum of the curl of a

vector potential c and an irrotational flow. Since in the (4) for v, substituting into (3b), and taking the curl of the
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resulting equation. The solution for f can be written, after vorticity v on the control points while still using a represen-
tation of the form (9) for q.using various vector identities, in the form

We now consider the velocity induced by a single ele-
ment of unit amplitude a and write the generator field for

f(x, t) 5
1

4f
E

V

r ? q(x9, t)
r 3 dv. (6) this element as

q 5 Ah(x) a. (11)Substituting (6) into (4) and solving for v gives the vorticity
field in terms of the generator field. The =f term in (4)
makes a contribution to the vector potential in (3b)1 which Since the equation (8) that we wish to solve does not

explicitly involve time, time dependence will not be explic-can similarly be written as the gradient of a scalar, or
itly denoted in the following. In (11), a is a unit vector
which specifies the direction of q and the blob functionc 5 h 1 =s, (7)
has been written as the product of a vorticity distribution
function h(x) and a normalization constant A. From thewhere the =s term in (7) does not contribute to the induced
normalization condition (10), the constant A is obtained asvelocity and h is determined only by the generator field

q from
A E

V
h(x) dv 5 1. (12)

=2h 5 2q. (8)

We consider a solution of (8) in which h is in the same
A representation for the generator field is now intro- direction a as the generator field, so that

duced in terms of N overlapping anisotropic elements, lo-
cated at control points xn(t) and having radii Rn(t) and
aspect ratios «n(t), as h 5 2SA

bD I(x) a, (13)

q(x, t) 5 ON
n51

Vn(t) fn(x 2 xn , Rn , «n). (9)
where the constant b equals 2f in two dimensions and 4f
in three dimensions. Substituting (11) and (13) into (8)
gives a scalar Poisson equation for the function I of theThe element weighting functions (or ‘‘blob functions’’) fn
formare normalized by

=2I 5 b h(x). (14)E
V

fn dv 5 1, (10)

The approximate method for solution of (14) to be fol-
so that the amplitude Vn is equal to the integral of the lowed in the paper is summarized here for the case of two-
vorticity contained in element n over all space. The part dimensional flows in the x 2 y plane. It is assumed that
h of the vector potential and the induced velocity u are the distribution function h(x) is symmetric with respect to
obtained by substituting (9) into integrals similar to (3a) both the x and y axes. The solution I(x) of (14) will then
and (3b), with v replaced by q and c replaced by h. Since satisfy the symmetry conditions
these equations are linear in q, the induced velocities and
vector potentials evaluated from each element can be ­I

­x
(2x, y) 5 2

­I
­x

(x, y),
­I
­x

(x, 2y) 5
­I
­x

(x, y),

(15)
added to give the total values at any point.

By writing a representation for the generator field
(rather than for the total vorticity field) for three-dimen- ­I

­y
(2x, y) 5

­I
­y

(x, y),
­I
­y

(x, 2y) 5 2
­I
­y

(x, y).
sional problems, the requirement of divergence-free vortic-
ity can always be enforced. We will follow this approach,
for notational convenience, in both two and three dimen- Using (15), the solution for I(x, y) can then be obtained
sions in the rest of this section, where for two dimensions in the positive x 2 y quadrant subject to the boundary con-
it is implicit that f vanishes everywhere. In traditional ditions
vortex algorithms [6–10], the generator field q is also used
in the equations of motion in place of the vorticity v;
however, Marshall and Grant [10] have recently presented ­I

­xU
x50

5 0,
­I
­yU

y50

5 0. (16)
an approach by which it is possible to evolve the total
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The function I(x, y) in (14) can be written as the sum tropic Gaussian elements in two dimensions. While we
present results for the popular Gaussian form, an algebraicof some harmonic function I1(x, y) and a particular solution

I2(x, y), such that expression for h(x, y) may lead to even simpler forms for
the relations arrived at below.

=2I1 5 0, =2I2 5 bh(x, y). (17) The distribution function h(x, y) for the Gaussian ele-
ment is written in terms of length variables x and y, which

Let us now suppose that the distribution function h(x) is have been made dimensionless by division by the element
prescribed such that the length scale in the y-direction is radius R, as
smaller by a factor « ! 1 than that in the x-direction. The
particular solution I2 will then be such that the second h(x, y) 5 exp[2(x 2 1 y2/« 2)]. (22)
derivative with respect to x in (17)2 will be smaller than
that with respect to y by a factor of order «2. We can thus Substituting (22) into (12) and performing the integration,
approximate (17)2 by the normalization constant A is obtained as

­2I2

­y2 5 bh(x, y) 1 O(«2). (18) A 5
1

f«R2 . (23)

Integrating (18) twice with respect to y and using the fact Now substituting (22) into (19) and performing the double
that I2 and its derivatives must approach zero at infinity integration over y, we obtain the particular solution I2 of
yields a solution of the form (14) as

I2(x, y) 5 Ey

y
Ey

y9
bh(x, y0) dy0 dy9. (19)

I2(x, y) 5 2f« 2e2x2FÏf
y
«

erfc Sy
«
D2 e 2y2/«

2G. (24)

Differentiating (19) with respect to x, we see that the
boundary condition (16)1 on x 5 0 is satisfied indepen- Substitution of (24) and (22) into (17)2 verifies that the
dently by I2 . Differentiating (19) with respect to y and maximum relative error in =2I2 is of O(« 2).
setting y 5 0 gives We now seek a harmonic function I1 that satisfies the

boundary conditions (21), where
­I2

­yU
y50

5 2Ey

0
bh(x, y9) dy9. (20)

­I1

­yU
y50

5 2
­I2

­yU
y50

5 f 3/2«e 2x2
. (25)

The integral on the right-hand side of (20) in general does
not vanish, and so the part I2 of I(x, y) does not indepen-

A harmonic function I1(x, y) which satisfies (21)1 identicallydently satisfy the boundary condition (16)2 on y 5 0. In
can be written in terms of the Fourier cosine integral asorder that (16) will be satisfied for the function I(x, y) as

a whole, we must seek a harmonic function I1 which satisfies
I1(x, y) 5 C ln(r) 1 Ey

0
f (k) e 2ky cos (kx) dk, (26)the boundary conditions

where C is a constant to be determined and r 5 (x 2 1­I1

­xU
x50

5 0,
­I1

­yU
y50

5 2
­I2

­yU
y50

5 Ey

0
bh(x, y9) dy9, (21)

y2)1/2. The first term on the right-hand side in (26) repre-
sents a point vortex and thus satisfies (17)1 and both of
the boundary conditions (16) identically. Substituting (26)together with the requirement that the induced velocity
into the boundary condition (25) along y 5 0, an integralreduce to that from a point vortex of unit circulation at
equation for the function f (k) in (26) is obtained asinfinity. Since the solution space for (17) is unbounded in

the positive x and y directions, the solution for I1 is most
easily obtained using a transform method, as illustrated in Ey

0
k f (k) cos(kx) dk 5 2f 3/2« e 2x2

. (27)
the next two sections.

We note that the treatment of other distribution functions3. ANISOTROPIC GAUSSIAN ELEMENTS IN
in two dimensions would be essentially the same as givenTWO DIMENSIONS
above for the Gaussian, except that the functional depen-
dence on x on the right-hand side of (27) would be dif-In this section, we use the method sketched in Section

2 to obtain an expression for the velocity induced by aniso- ferent.
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It now remains only to determine the function f (k) and Using integrals number 3.741.2 and 3.896.4 of Gradshteyn
and Ryzhik [13], (33) can be reduced to simplythe constant C, subject to satisfaction of (27) and the

boundary condition at infinity. To solve for f (k), it is conve-
nient to define a function g(x) by

f (k) 5
f«

k
(1 2 e 2k2/4). (34)

g(x) ; Ey

0
f (k) sin(kx) dk, (28) Substituting (34) into (26) and taking derivatives with

respect to x and y gives

such that (27) can be written as
­I1

­x
5

Cx
r 2 2f« Ey

0
(1 2 e 2k2/4) e 2ky sin(kx) dk,

(35)­g
­x

5 2f 3/2« e 2x2
. (29) ­I1

­y
5

Cy
r 2 2f« Ey

0
(1 2 e 2k2/4) e 2ky cos(kx) dk,

In the case of Gaussian blobs, the solution for f (k) can
Using integrals number 3.897.1, 3.897.2, 3.893.1, andbe obtained most easily by using properties of Fourier
3.893.2 of Gradshteyn and Ryzhik [13], the derivatives intransforms, rather than by direct integration of (29). We
(35) can be written in terms of the Faddeeva function [14]recall the Fourier sine and cosine transform pairs
w(z) ; e 2z2

erfc(2iz), where z 5 x 1 iy, as

s(g) 5 Ï2/f Ey

0
f (x) sin(gx) dx,

(30a)

­I1

­x
5 (C 2 f«)

x
x 2 1 y2 2

f 3/2i«
2

[w(z) 2 w(2z)],

(36)
f (x) 5 Ï2/f Ey

0
s(g) sin(gx) dg, ­I1

­y
5 (C 2 f«)

y
x 2 1 y2 1

f 3/2«

2
[w(z) 1 w(2z)],

and
where an overbar denotes the complex conjugate.

The far-field expansion of the expressions (36) is simply
c(g) 5 Ï2/f Ey

0
f (x) cos (gx) dx,

(30b) ­I1

­x
5

Cx
x 2 1 y2 ,

­I2

­y
5

Cy
x 2 1 y2 . (37)

f (x) 5 Ï2/f Ey

0
c(g) cos(gx) dg.

From the requirement that the induced velocity should
Using the property that approach that due to a point vortex with unit circulation

sufficiently far away from the origin, we must choose the
constant C asEy

0

­g
­x

sin(ax) dx 5 2a Ey

0
g(x) cos(ax) dx (31)

C 5 f«. (38)

if g(x) R 0 as x R y and taking the Fourier sine transform Gathering the results in (24), (26), (34), and (38), and
of (29), we obtain neglecting ­I2/­x which is everywhere smaller than the

other terms by a factor of O(«) or less, the derivatives of
I with respect to x and y can be written in terms of the

Ï2/f Ey

0
g(x) cos(ax) dx 5 Ï2 f« Ey

0
e 2x2 sin(ax)

a
dx. (32) real part a and the imaginary part b of w(z) as

­I
­x

5 f 3/2«b,
­I
­y

5 f 3/2«a 2 f 3/2«e 2x2
erfc( y/«). (39)Taking the Fourier cosine transform of (32) and then tak-

ing the Fourier sine transform of the resulting equation,
after substituting (28), gives The approximate solution (39) satisfies the boundary con-

ditions at x 5 0 and y 5 0 identically, approaches the
expected far-field form, and satisfies the differential equa-

f (k) 5
4

Ïf
« Ey

0
Ey

0
Ey

0
e 2j

2 sin(aj) cos(ah) sin(kh)
a

dj da dh.
tion (14) approximately with a relative error in =2I of at
most O(«2) for all x and y. The induced velocity field from(33)
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function of distance away from the vortex center. The
induced velocity field is nearly the same for all (small)
values of the aspect ratio «, with the exception that the
curvature along the line y 5 0 of the streamlines near
the center of the vortex becomes increasingly sharper as
« decreases.

For an isotropic Gaussian element of unit circulation,
the velocity is also given by (40) with the gradients of I
given simply by

­I
­x

5
f« x
r2 (1 2 e 2r2

),
­I
­y

5
f« y
r2 (1 2 e2r2

), (41)

where r 5 (x2 1 y2)1/2. The average CPU time required
for calculation of the velocity field induced from an aniso-
tropic Gaussian element from (39)–(40) was found to be
9.3 times longer than that required for a Gaussian isotropic

FIG. 1. Streamlines for a two-dimensional anisotropic Gaussian vor- element from (40)–(41).
ticity blob with aspect ratio « 5 0.1 and radius R 5 1.

4. ANISOTROPIC GAUSSIAN ELEMENTS IN THREE
DIMENSIONSthe single element is obtained in terms of the gradients in

(39), using (1) and (13), as In three dimensions the distribution function for a
Gaussian element is written in terms of a radial coordinate
r (;hx2 1 y2j1/2) and an axial coordinate z, where both ru 5 2

1
2«f 2

­I
­y

, v 5
1

2«f 2

­I
dx

, (40)
and z are made dimensionless by division by the element
radius R, aswhere u and v are non-dimensionalized by the element

circulation divided by the element radius R.
h(r, z) 5 exp[2(r2 1 z2/«2)]. (42)A subroutine for efficient calculation of the function

w(z) is available [15]. (The potential user is warned, how-
The normalization constant A is obtained from the integralever, that this subroutine is subject to underflow errors for
(12) assmall values of y.) An example showing the streamlines

of the induced velocity field from a Gaussian blob with
aspect ratio « 5 0.1 is given in Fig. 1. Data on the maximum A 5

1
f 3/2«R3 . (43)

difference between the induced velocity from an aniso-
tropic element and a point vortex is given in Table I as a

Since h(r, z) is symmetric about the r 5 0 axis and also
symmetric about the plane z 5 0, the function I(r, z)

TABLE I satisfies the symmetry conditions
Data Showing the Difference between the Induced Velocity

of a Two-Dimensional Gaussian Anisotropic Element (with « 5 ­I
­r

(r, 2z) 5
­I
­r

(r, z),
­I
­z

(r, 2z) 5 2
­I
­z

(r, z), (44)0.1) and a Point Vortex of the Same Circulation for Different
Numbers of Element Radii away from the Vortex Center

Maximum relative difference so we only need to consider solution of (17) in the half-
Number of element radii between induced velocity from space z . 0, subject to the boundary conditions

away from the vortex center anisotropic blob and point vortex

2 0.11 ­I
­r
U

r50

5 0,
­I
­zU

z50

5 0. (45)3 0.054
4 0.031
5 0.020
6 0.014 The particular solution I2 of I(r, z) from (14) approxi-
8 0.0078

mately satisfies an equation of the form (18), with (x, y)10 0.0050
replaced by (r, z), respectively. Substituting the Gaussian
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distribution function (42) and integrating twice over z gives Combining (46), (48), and (52), an approximate expres-
sion for the derivatives of I(r, z), with relative error ofthe particular solution as
order «, is given by

I2 5 22f«2 e 2r2 FÏf
z
«

erfcSz
«
D2 e 2z2/«

2G. (46) ­I
­r

5 f 3/2« Ey

0
k e 2kz e 2k2/4 J1(kr) dk, (53a)

The expression (46) for I2 satisfies the first of (45), but
­I
­z

5 22f 3/2« e 2r2
erfc(z/«)

not the second boundary condition on z 5 0 or the far-
field condition. We thus seek a harmonic function I1 which 1 f 3/2« Ey

0
k e 2kz e 2k2/4 J0(kr) dk. (53b)

satisfies the far-field condition and the boundary conditions

The solution (53) satisfies the boundary conditions on
r 5 0 and z 5 0 identically, approaches the expected­I1

­r
U

r50

5 0,
­I1

­zU
z50

5 2
­I2

­zU
z50

5 2f 3/2 « e 2r2
. (47)

far-field solution and satisfies the differential equation
(14) approximately with relative error of O(«2) for all r
and z. The velocity induced by the element can be obtained

A harmonic function I1 which satisfies (47)1 identically is from these gradients, using (1) and (13), as
given by the integral

u 5 2
1

4f 5/2«
=I 3 a, (54)

I1(r, z) 5 Ey

0
f (k) e 2kz J0(kr) dk, (48)

where u is non-dimensionalized by the integral of vorticity
where J0(?) is the Bessel function of the first kind of order over the element (the element amplitude) divided by the
zero. The function f (k) is chosen to satisfy the boundary square of the element radius R.
condition (47)2 , such that using (48) we have We have not been able to obtain an analytical solution

for the remaining integrals in (53), but instead we evaluate
these integrals numerically using a Gauss–Laguerre quad-Ey

0
k f (k) J0(kr) dk 5 22f 3/2« e 2r2

. (49) rature of the form

For other forms of blob functions in three dimensions, the Ey

0
f (a) e 2a da > ON

i51
f (ai) wi . (55)

general expression for I1 would be similar to that given
above, but the right-hand side of (49) would differ. Recall-

The optimal choices for evaluation points ai and weightinging the Hankel transform pair
functions wi were obtained using an algorithm given by
Press et al. [17]. For efficient evaluation of the integrals in

h(g) 5 Ey

0
x f (x) J0(gx) dx,

(50)
(53a), (53b), the domain of numerical integration over k
is divided into four regions based on the value of uzu. In

f (x) 5 Ey

0
g h(g) J0 (gx) dg, region 1 (for uzu # zsmall), the integrals are approximated

through O(z) using the first few terms of the expansion
e 2kz 5 1 2 kz 1 Ask2z2 1 O(kz)3, which gives

we take the inverse Hankel transform of (49) to obtain an
expression for f (k) as ­I

­r
> f 2«r e 2r2

[I0(r2/2) 2 I1(r2/2)] 2 4f 3/2«rze 2r2
,

(56)
f (k) 5 22f 3/2« Ey

0
j e 2j 2

J0(kj) dj. (51) ­I
­z

> 2f 3/2«e 2r2
erf(z/«) 2 f 3/2«z Ey

0
k2 « 2k2/4 J0(kr) dk,

Using integral number 6.614.1 and expression 8.485 in
where In(?) is the modified Bessel function of order n of

Gradshteyn and Ryzhik [13], as well as an identity in Abra-
the first kind. The last term in (56)2 can be evaluated using

mowitz and Stegun [16], the integral in (51) can be solved
the Gauss–Laguerre sum (55) with a 5 k2/4 and f (a) 5

to yield simply
4Ïa J0(2rÏa).

For region 2 (zsmall # uzu # zmid), the integrals in (53)
are directly computed using (55) with a 5 k2/4 and f (a)f (k) 5 2f 3/2« e 2k2/4. (52)
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5 2 exp(22zÏa) Jn(2rÏa), where the order n of the
Bessel function corresponds to the appropriate order in
(53). From various test cases with similar integrals that
admit an exact solution, it is found that the Gauss–
Laguerre approximation converges most rapidly when the
exponential term on the right-hand side of (55) decays
faster than the function f (a). Thus, as z becomes larger,
the e 2kz factor in (53) will initially decay faster than the
e 2k2/4 factor. In region 3 (zmid # uzu # zbig), we thus again
use the Gauss–Laguerre formula (55), but now set a 5 kz
and f (a) 5 (a/z2) exp(2a2/4z2) Jn(ar/z). In region 4
(uzu $ zbig), the field point is sufficiently far away from the
centroid that we can use the far-field expansions

­I
­r

5
f 3/2«r

(z2 1 r2)3/2 ,
­I
­z

5
f 3/2« z

(z2 1 r2)3/2 . (57)

FIG. 2. Streamlines for a cross section on the y 5 0 plane of a three-The accuracy of our integration schemes can be assessed
dimensional anisotropic Gaussian vorticity blob with amplitude aligned

by comparing results obtained with different methods at in the positive y-direction, aspect ratio « 5 0.1, and radius R 5 1.
a given point. For simplicity, these comparisons were per-
formed in the y 5 0 plane, so that r 5 x, and with the
generator vector oriented in the y-direction. As an exam-
ple, when the methods used in regions 2 and 3 are both region 2, the results also do not vary to within four signifi-
applied at the point x 5 z 5 21.09 with N 5 40 in (55), cant figures for N $ 10 at small values of r (e.g., r 5 0.20).
the induced velocity predictions differ by only 0.6%. At a On the other hand, for large values of r in region 2 (e.g.,
point x 5 z 5 21.98 with a larger value of z (with N 5 r 5 4), the results are quite poor for small values of N
40), the induced velocity predictions differ by about 3%. and it is recommended that N $ 40 be chosen at such
Although the results are not very sensitive to the value of points to obtain acceptable accuracy.
zmid chosen, it is found that if the approach in region 3 is The induced velocity expression for an isotropic
used for uzu less than about 0.4, the results are very poor Gaussian element is given by (54) with the gradients of I
(and, in fact, qualitatively incorrect). Thus we must require given by
that either zmid or zsmall be greater than or equal to 0.4. The
predictions using the expansion in region 1 were compared
with the numerical calculations in region 2, and the induced ­I

­r
5

f 3/2«r

r3 PS3
2
, r2D,

­I
­z

5
f 3/2«z

r3 PS3
2
, r2D, (59)

velocity predictions differ by about 10% for x 5 z 5 20.20
and by about 3.7% for x 5 z 5 20.12. Based on these
comparisons, reasonable values for the borders between where r 5 (z2 1 r2)1/2 and P is the incomplete gamma
the different regions would seem to be given by choosing function. Using an identity in Abramowitz and Stegun [16],

we can relate P(Ds, r2) to the error function as
zsmall 5 0.1, zmid 5 0.5, zbig 5 4. (58)

PS3
2
, r2D5 erf (r) 2

2r e 2r2

Ïf
. (60)The values (58) are used, with N 5 40, to obtain the stream-

lines for the velocity field in the x 2 z plane shown in Fig.
2, for a case where the generator field is oriented along
the y-direction. The CPU time required for numerical calculation of the

induced velocity of a three-dimensional anisotropicTests were also performed to examine the convergence
rate of the Gauss–Laguarre integration by comparing pre- Gaussian element at a point in regions 2 or 3 was found

to be approximately equal to the number of terms N indicted values for induced velocity for several different val-
ues of N in (55). For the approach used in region 3, it is the Gauss–Laguerre integration formula (55) times the

CPU time required to compute induced velocity for anfound that the induced velocities do not change to within
four significant figures for N $ 10. In fact, even runs with isotropic element. It is thus important to use no more terms

in the Gauss–Laguerre summation (55) than is necessaryN 5 5 yield results which differ from those with higher
values of N by less than 0.1%. For the approach used in to achieve the desired accuracy.
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5. APPLICATION TO BOUNDARY LAYER FLOWS l > =y in the present application). For two-dimensional
calculations, it then follows that the error due to the itera-

The results of a series of test calculations are reported tion (62) decreases with an increase in element number N
in this section for the two-dimensional Blasius boundary roughly in proportion to 1/N, which also agrees with our
layer, in which the CPU time and accuracy for calculations computational experience. Two examples showing the in-
with both anisotropic and isotropic Gaussian blob func- terpolated vorticity on a set of control points from the
tions with various number of elements are compared as a Blasius similarity solution (solid line) and the representa-
function of Reynolds number. The elements are distributed tion (61) (circles), after performing the iteration (62) using
on Nx rows along a flat plate of dimensionless length anisotropic elements, are given in Figs. 3a and b for cases
L 5 2. A number Ny elements are distributed in each row with Ny 5 10 and 40, respectively, and Nx 5 10, and evalu-
in the direction normal to the plate, where the separation ated at x 5 1.1. These figures generally indicate that the
of the elements is set such that the farthest element control iterative procedure (62) yields an accurate fit to the vortic-
point lies at a distance y 5 6(2xL)1/2/Re1/2

L from the plate ity field, although a small oscillation in vorticity is apparent
(ReL ; UL/n), which corresponds to truncating the bound- in Fig. 3b very close to the wall, which occurs due to a
ary layer when the similarity parameter h ; y(U/2xn)1/2 sudden reduction in the amount of element overlap within
exceeds 6. For anisotropic blob functions, the element ra- a few element radii from the wall.
dius R is set equal to 2 Dx and the aspect ratio « is set Once the element amplitudes are known, the induced
equal to 2 Dy/R, such that a uniform element overlap of velocity field is calculated using (39)–(40) for anisotropic
2 is maintained both tangential and normal to the plate. elements and using (40)–(41) for isotropic elements. Both
For isotropic blob functions, the elements radius R is set the velocity induced by the elements and that induced
equal to the largest of 2 Dx and 2 Dy. by image vorticity over the plate surface is included. An

The vorticity on each element control point is set using example of velocity profiles at x 5 1 obtained from this
the standard similarity solution for the Blasius boundary procedure, using anisotropic Gaussian elements with
layer (e.g., as given by White [18]). Using a representation ReL 5 1000, is shown in Fig. 4 for Nx 5 10 and values of
of the form (9) for the vorticity field, we obtain a matrix Ny of 10 (dashed-double dotted curve), 20 (dashed curve),
equation for the element amplitudes Vn of the form and 40 (solid curve). The maximum aspect ratios within

the boundary layer for the anisotropic elements for the
cases with Ny 5 10, 20, 40 are « 5 0.27, 0.13, 0.067, respec-

gm 5 ON
n51

Wmn Vn , (61) tively. The prediction of the Blasius similarity solution for
the flat-plate boundary layer is shown in Fig. 4 using circu-
lar symbols. The velocity profiles in Fig. 4 are close towhere gm 5 g(xm , t) and Wmn 5 fn(xm 2 xn , Rn , «n). This
the similarity solution everywhere, except just above thematrix equation is, in general, ill-conditioned, such that
boundary, where the computed velocity is observed to turnsolution of (61) with a fairly smooth vorticity field leads
upwards so as to meet the boundary with a slope muchto large variations in amplitudes of nearby elements. In-
less than that of the exact solution. It is recalled that sincestead of solving (61) directly, we use an iterative scheme
the image vorticity is of the opposite sign to that of theproposed by Marshall and Grant [10] to obtain a smooth
vorticity in the flow, a strong vorticity discontinuity occursfit to the vorticity field. In this iterative scheme, it is tempo-
at the boundary in the exact Blasius boundary layer solu-rarily assumed that about each control point m, there exists
tion. The vortex blob representation smooths out the vor-a set of control points n [ Q(m) for which the element
ticity discontinuity and, hence, rounds the slope discontinu-amplitudes are nearly the same as that at control point m.
ity in the velocity profile on the two sides of the plate. AsLetting P(m) denote the converse of Q(m), the matrix
shown in Fig. 4, the error associated with this smoothingequation (61) is approximated by
can be delayed by decreasing the element aspect ratio while
increasing the number Ny of elements used to discretize the
flow in the direction normal to the wall. Nevertheless, itgm 5 V(q11)

m ON
n[Q

Wmn 1 O
n[p

V(q)
n Wmn , (62)

is clear that the smoothing of the vorticity field implicit in
the vortex blob representation tends to introduce error
(which may be considerable) in the calculation of wall slipwhere q is an iteration index. The set Q(m) typically in-

cludes 8–10 elements close to the given element m. The velocity (which is sometimes used to specify the vorticity
flux normal to the wall [7]) and wall shear stress. A methodexpression (62) usually coverges within about 6–8 itera-

tions to a point where the maximum relative change in to eliminate this smoothing error is presented in the
next section.element amplitude is less than 1026. The error in vorticity

due to the approximation (62) is of order l 2 =2g, where l If isotropic elements are used for the boundary layer
calculations at medium to high Reynolds numbers, theis the typical distance between neighboring elements (e.g.,
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FIG. 3. Comparison of the vorticity profile at x 5 1.1 for the Blasius similarity solution (solid curve) and the representation (61) (circular
symbols), after using the iteration (62) to set the element amplitudes. Cases shown are for anisotropic elements with Nx 5 10 and (a) Ny 5 10 or
(b) Ny 5 40.

distance Dx between elements in the direction tangent to
N 5 NyNx 5 Ny EL

0

2
R(x)

dx 5
Ï2
6

Re1/2
L N 2

y . (64)the boundary must be on the order of the element separa-
tion distance Dy normal to the boundary. If elements are
placed out to a distance ymax 5 6(2xL)1/2/Re1/2

L in the Blas- Predicted velocity profiles for calculations with isotropic
ius boundary layer and the element radius is set by elements are shown in Fig. 5 for a case with ReL 5 1000,
R 5 2 Dy, then at a position x the element radius is Ny 5 20, and six different values of Nx , ranging from 20

to 300. The estimated value of Nx for this case from (64)
is 150 for adequate coverage of the boundary layer. It isR(x) 5

2ymax

Ny
5

12(2xL)1/2

Re1/2
L Ny

. (63)
found that for values of Nx much less than the estimated
value given by (64), the velocity profile will significantly

The total number of isotropic elements required to cover
the boundary layer in a two-dimensional calculation is then

FIG. 5. Comparison of exact similarity solution for Blasius boundary
layer at x 5 1 (circular symbols) with computed results using isotropic
Gaussian elements, with Ny 5 20 and six different values of streamwiseFIG. 4. Comparison of exact similarity solution for Blasius boundary

layer at x 5 1 (circular symbols) with computed results using anisotropic resolution: Nx 5 20, 36, 50, 100, 150, 300. The computed slip velocity is
observed to decrease monotonically as Nx is increased, such that at highGaussian vorticity elements, with Nx 5 10 and three different values of

cross-stream resolution: Ny 5 10 (dashed-double dotted curve), 20 Nx the results are nearly the same as for the calculations with anisotropic
elements (Fig. 4, dashed curve).(dashed curve), and 40 (solid curve).
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deviate from the Blasius profile and yield a large wall slip We have reported in Section 3 that calculation of the
induced velocity at a typical point P requires 9.3 timesvelocity (as illustrated, for example, by the curves for

Nx 5 20, 36, and 50 in Fig. 5, which have slip velocities of longer for anisotropic Gaussian elements than for isotropic
elements. The ratio of the time required for a single time0.65, 0.35, and 0.24, respectively). As the value of Nx is

increased to near or past the estimated value from (64), step with isotropic elements, tiso , to that required with
anisotropic elements, tani , is then given (for a direct calcula-the velocity profiles (for Nx 5 100, 150, and 300) converge

to a curve which is very close to the dashed curve in Fig. tion) by
4, obtained using anisotropic elements with Nx 5 10 and
the same values of Ny and ReL .

When the value of Nx is much lower than that given by
tiso

tani
5 S0.11

Niso

Nani
D2

. (67)
(64) for isotropic elements, the element radii will be based
on 2Dx(@2Dy), such that the influence of the vorticity field

In our calculations for the Blasius boundary layer withof a single element may span a substantial amount of the
anisotropic elements, Nx,ani 5 10 and Ny 5 40 gives fairlyboundary layer or even protrude out of the boundary layer.
reasonable results, as shown in Figs. 4 and 5. For this case,In this extreme case, not only is the smoothing error of
Nani/Niso in (65) is approximately equal to Re1/2

L . Substitut-the vorticity discontinuity at the wall greatly exaggerated,
ing this estimate into (67) indicates that tiso/tani for thisbut the iteration scheme (62), together with the representa-
example is about ReL/100. For high Reynolds numbertion (61), tends to smooth out the vorticity field everywhere
near-wall flows, the anisotropic elements clearly offer sub-within the boundary layer, both lowering the peak vorticity
stantial time reduction.at the wall and increasing the effective boundary layer

Further advantages of using anisotropic elements arisethickness. This behavior is a consequence of the observa-
with the use of an accelerated algorithm, such as that oftion that the iteration (62) acts as a low-pass filter, which
Greengard and Rohklin [11]. In this case, both anisotropicsmears out vorticity fields with typical length scales much
and isotropic elements can be treated as point vorticesless than the element length scales in the x and y directions.
when the velocity is calculated at points sufficiently farErrors of this type do not arise with anisotropic elements,
away, such that for an O(N) algorithm tiso/tani would besince the element radius and aspect ratio can be set inde-
equal to Niso/Nani in the indirect part of the velocity compu-pendently to guarantee that the element length scale in
tation (i.e., box–box or box–element interaction) and (67)the direction normal to the boundary remains small, com-
would apply only to the direct part of the velocity computa-pared to the boundary layer thickness, while still ade-
tion (i.e., element–element interaction). One of the majorquately covering the vorticity field by the element repre-
limiting factors with accelerated algorithms based onsentation.
multipole expansions is the amount of memory required,From the calculations shown in Fig. 5, the expression
which can increase nearly as N 2 (multiplied by a small(64) seems to give a fairly reasonable estimate for the
factor) in order to store the level of interaction betweennumber of isotropic elements needed to resolve the Blasius
each box and other boxes. By reducing the number ofboundary layer (on one side of the plate) in a two-dimen-
elements with use of anisotropic blob functions, the mem-sional flow. A comparison is now made between calcula-
ory requirements can also be substantially reduced.tions with isotropic elements in which Nx is set by (64) and

calculations with anisotropic elements in which Nx is set
to some value Nx ,ani . Both calculations with isotropic and 6. IMPROVEMENT OF NEAR-WALL FLOW
anisotropic elements have the same number Ny elements CALCULATION WITH ANISOTROPIC
across the boundary layer in each row. The ratio Niso/Nani VORTICITY DOUBLETS
of total number of isotropic elements to that of anisotropic
elements required for a given two-dimensional calculation In the previous section, we found that the vortex blob

representation smooths the vorticity discontinuity at thecan then be expressed as a function of Reynolds number as
wall and leads to an error in calculation of wall slip velocity
and shear stress. While the error was shown in Fig. 4 toNiso

Nani
5

Ï2
6

Re1/2
L

Ny

Ny,ani
. (65) become less severe as the number of elements spanning

the boundary layer increases, even for values of Ny as large
as 40 there is substantial error in the calculated wall shear

For a three-dimensional calculation, N is of the order stress (e.g., see the solid curve in Fig. 4). This smoothing
NyN 2

x in (64), so the ratio in (65) becomes error can be largely avoided, however, by placing doublet-
type elements along the wall. Doublet-type elements are
formed of two vorticity patches of opposite signs, whereNiso

Nani
5

1
18

ReL
N 2

y

Nx,ani
. (66)

the vorticity within the doublet changes discontinuously
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across its centerline. By placing doublet-type elements Sample calculations have been performed for the Blasius
boundary layer using a single anisotropic doublet at thealong the wall, the required vorticity discontinuity at the

wall can be enforced. wall below each row of elements. The normalization con-
stant A for doublets of the form (68) is the same as thatAs an example, the distribution function for the doublet

equivalent to the two-dimensional Gaussian blob (22) is given in (23) for Gaussian vorticity blobs. The amplitude
of the doublet is fit using the same interation formula (62)simply
as for any other element. We find that with use of vorticity
doublets at the wall, the no-slip condition is much moreh(x, y) 5 [2H(y) 2 1] exp[2(x 2 1 y2/«2)], (68)
closely satisfied and the slope of the velocity profile near
the wall is much smoother than without the vortex dou-where H(y) is the step function (H(y) 5 1 for y . 0 and
blets. An example comparing the velocity profile calculatedH(y) 5 0 for y , 0). We can again integrate the governing
both with and without vorticity doublets is shown in Fig.equations (17) for I1 and I2 in the positive x 2 y quadrant,
6 for anisotropic elements with Nx 5 Ny 5 10. Even thoughbut now we require that the velocity be entirely in the x-
the number of elements used in this calculation is quite adirection on both x 5 0 and y 5 0, such that there is no
small (N 5 100), the velocity profile calculated with surfaceflow over the doublet centerline. The boundary conditions
vorticity doublets agrees extremely well with the Blasius(16) are thus changed for the vorticity doublet to
similarity solution right up to the wall.

­I
­xU

x50

5 0,
­I
­xU

y50

5 0. (69) 7. CONCLUSIONS

In this paper, a method is presented for obtaining ap-
An expression for I2 satisfying (17)2 is given still by (24), proximate expressions for the velocity induced by highly
but now the boundary condition (25) on I1 along y 5 0 anisotropic, smooth vorticity elements, in which element
becomes aspect ratio is used as a small parameter. The method is

illustrated for anisotropic Gaussian elements in both two
and three dimensions. In the two-dimensional case, the­I

­xU
y50

5 2
­I2

­xU
y50

5 2f«2 x e 2x2
. (70) induced velocity for the Gaussian element is expressed in

terms of the Faddeeva function w(z), which can be ob-
tained using an efficient algorithm available in Ref. [15].

A harmonic function I1 which satisfies the boundary condi- In the three-dimensional case, the induced velocity for the
tions (70) and (69)1 can be obtained following an approach Gaussian element is obtained in terms of 2 one-dimen-
similar to that described in Section 3 for two-dimensional
vorticity blobs. Combining this solution with the expression
(24) for I2 and differentiating with respect to x and y gives

­I
­x

5 2f«2(xa 2 yb)

1 2f«2 x e 2x2 FÏf
y
« erfcSy

«D2 e 2y2/«
2G, (71a)

­I
­y

5 2Ïf«2 2 2f«2(ya 1 xb) 2 f3/2« e 2x2
erfc(y/«),

(71b)

where a and b are the real and imaginary parts, respec-
tively, of the Faddeeva function w(z). It is noted that only
the ­I2/­y term in (71b) is of O(«), the other terms in (71a)
and (71b) being of O(«2). The leading order approximation
in « for the gradients of I(x, y) for a highly anisotropic FIG. 6. Comparison of computed results for the Blasius boundary

layer at x 5 1 for calculations with vorticity doublets at the surface (solidGaussian vorticity doublet is therefore simply
curve) and without vorticity doublets (dashed-double dotted curve). The
calculations are for Nx 5 Ny 5 10, and the results of calculations with
vorticity doublets are found to compare very well with the exact similarity­I

­y
5 2f 3/2« e 2x2

erfc(y/«) 1 O(«2),
­I
­x

5 O(«2). (72)
solution (circular symbols).
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sional integrals which can be efficiently evaluted numeri- velocity field using a minimum number of smooth ele-
ments. The accuracy of computational methods whichcally using Gauss–Laguerre quadratures.

Tests comparing accuracy and CPU time for calculations make use of anisotropic smooth elements will depend criti-
cally on the choices made for the three issues listed above.of the Blasius boundary layer using both anisotropic and

isotropic blob functions were performed. It is found that Our current computational method resolves these three
issues in ways that are very different than those which canwith a given resolution of the vorticity across the boundary

layer, the velocity profiles calculated using isotropic blob be found in the available literature, and for this reason
dynamic simulations using the anisotropic elements devel-functions approach those obtained with anisotropic blob

functions as the separation of isotropic elements along the oped here will therefore be presented in a separate paper.
wall becomes sufficiently small. The ratio of the number

ACKNOWLEDGMENTSof isotropic elements to the number of anisotropic elements
required to resolve a flow with a given accuracy is found to

Research support for J.S.M. was provided by the U.S. Army Researchincrease in proportion to the square-root of the Reynolds
Office under Grant Number DAAH04-94-G-0378 with the University of

number for two-dimensional flows and in proportion to Iowa, by an Old Gold Summer Fellowship from the University of Iowa,
the Reynolds number for three-dimensional flows. Even and by the ASEE/Navy Summer Faculty Research Program during the

summer of 1994. Research support for J.R.G. was provided by the U.S.though induced velocity calculation at a given field point
Office of Naval Research under Grant Number N0001493WX22029 andrequires nearly 10 times as long with an anisotropic
by internal funding from the Naval Undersea Warfare Center, Divi-Gaussian element as with an isotropic element, the de-
sion Newport.

crease in the number of elements required can result in
significant CPU time reduction for high Reynolds number REFERENCES
near-wall flows.

One shortcoming of the vortex blob representation for 1. A. J. Chorin, J. Comput. Phys. 27, 428 (1978).
boundary layer calculations, for both anisotropic and iso- 2. S. Huyer, J. R. Grant, and J. S. Uhlman, AIAA Paper 94-0075,

1994 (unpublished).tropic elements, is that the discontinuity which occurs at
3. P. S. Bernard, J. Comput. Phys. 117, 132 (1995).the wall between the real vorticity field and the image
4. Z. H. Teng, J. Comput. Pnys. 46, 54 (1982).vorticity field is smoothed by the vorticity representation
5. O. M. Knio and A. F. Ghoniem, J. Comput. Phys. 86(1), 75 (1990).in terms of overlapping blobs. This smoothing yields a
6. G. S. Winckelmans and A. Leonard, J. Comput. Phys. 109, 247 (1993).velocity profile which turns upwards just above the wall,
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